

Building as a Power Plant

Dr Sara Walker, Dr Haris Patsios, Dr Mohammad Royapoor, Dr Peter Davison, Dr Mehdi Pazhoohesh

Newcastle University

The concept of BaaPP

- Local electricity distribution networks may need to be managed in a more active way
- Demand side management is one of the active management methods
- DSM is usually done by large industrial loads, at electricity grid scale
- There is the potential for an individual building to offer services to the local electricity distribution network
- The Urban Sciences Building is an interesting case study since it includes electricity generation, storage and demand, and thermal generation, storage and demand

Engineering and Physical Sciences Research Council

EPSRC

- 6 storey with basement and roof access, 12,800m² floor area
- 22 AHUs adjustable to 90% design duty (i.e. 10% reduction from full duty)
- 25 Heat Pumps
- A Siemens Desigo CC BMS system supervises all M+E actions via a KNX Open Protocol 'medium' for communication and monitoring under a 'Field Bus' control system
- Therefore the BMS data is not encrypted and accessible

Level	AHU	WC Extract fan	HRU
Basement		1 (Air compressor)	
L 00 (Ground)	3	6	9
L 01	4 3		
L 02	3	3	
L 03	4	3	
L 04	4	3	
L 05	2	2	
L 06	2	2	
Roof		1 (SUDs working area)	
Total	22	24	9

Heat pumps

AHU configurations

Swegon Teal range (R410a) with a total of 25 units at 51.5 kW to 112.3kW heating capacity. All reversible except for 3 rooftop units that are configured to heat DHW only.

Level	Heat pumps
L 00 (Ground)	3
L 01	4
L 02	3
L 03	4
L 04	4
L 05	2
L 06	2
Roof	3 (DHW)
Total	25

Capacity

- 445.9kW (W_c) / 1542.4kW (Clg) / 1975.7kW (Hng)
- CoP : Heating: 4.4 Cooling: 3.46

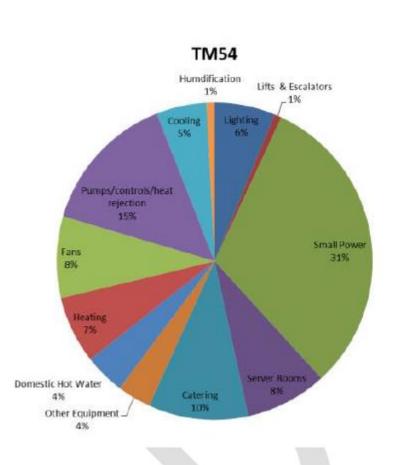
:

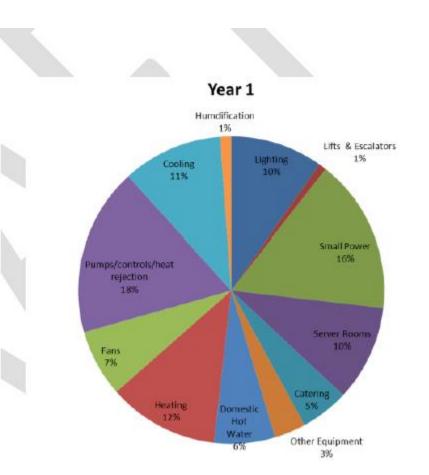
Of the above heating capacity 166.5 kW (or 8.4%) is for domestic hot water.

Singapore

ersity

Newcastle


Year 1 performance


- Predicted (TM54) demand 2,075MWh
- Actual demand 2,061 MWh

EPSRC

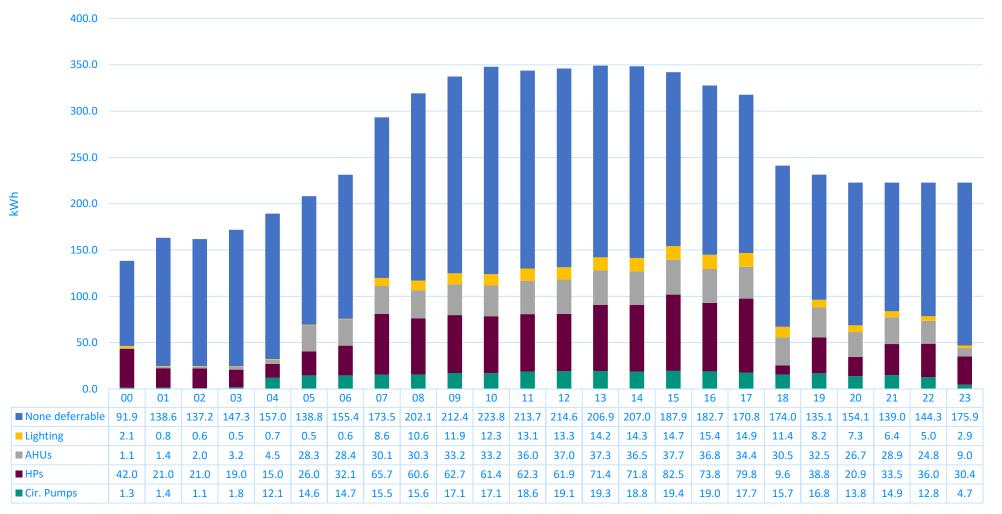
Research Council

Engineering and Physical Sciences

Figures from Buro Happold

The building monitoring

https://3d.usb.urbanobservatory.ac.uk/


Human comfort and DR

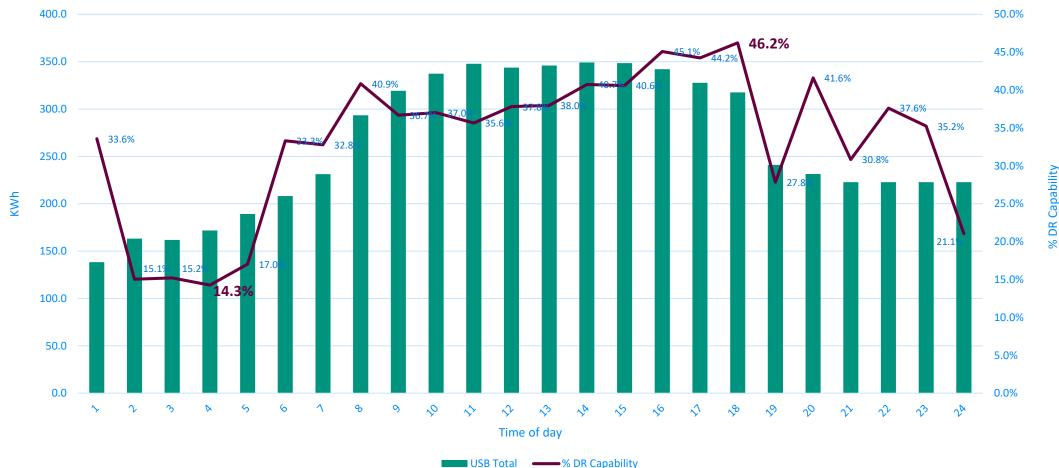
	Description	No	Load reduction possible	Share of building load (%)	Advance time needed	Current control	DR duration	Threshold for reversal of DR action		
[1]	Heat pumps	25	<u>100%</u>		0	OAT compensation- altering HP discharge temperatures with 5 minutes circulating pump overrun	Maximum 4 hour	If 19°C <t<sub>space <28°C 0.5°C per hour of ramp</t<sub>		
2	Terminal side circulating pumps	21 HTG 20 CHW	<mark>100%</mark>		0		Maximum 4 hour	None		
[3]	Primary circulating pumps *	12	<mark>100%</mark>		5-10 minutes		Maximum 4 hour	Need to be shut 5 minutes before and 5 minutes after HP are turned on/off		
4	AHU	22	<mark>50%</mark>		0		Maximum 4 hour	Will be boosted back at 1000ppm CO ₂		
[5]	Lighting		14%-24% [37]		0		Perhaps a design stage philosophy to incorporate a safe setback point similar to Hng for DR (i.e. dropping to 150 lux)	Minimum recommended values of 100 Lux in office areas, 50 Lux in kitchens and 5 Lux in circulations areas Labs excluded		
6	Lifts		<mark>100%</mark>		0					
7	7 EV charger 100% 0 [1] - ANSI/ASHRAE Standard 55, Thermal Environmental Conditions for Human Occupancy. 2010: Atlanta, Georgia.									
[3] [3] [5]	ASHRAE 62 Chartered	2.1-2016 Instituti G. and I	<i>, Ventilati</i> on of Buil 3. Birt <i>, De</i>	ion for Ac ding Serv mand-res	<i>ceptable Indo</i> ices Engineers sponsive lighti	or Air Quality. 203 s, KS17: Indoor Air	16: Atlanta, USA r Quality & Ventila	<i>tion</i> . Oct 2011: London. of Illuminating Engineering Society		

[5] David, S.W., et al. Strategies for Demand Response in Commercial Buildings. in 2006 ACEEE Summer Study on Energy Efficiency in Buildings. Pacific Grove, CA.

EPSRC Engineering and Physical Sciences Research Council

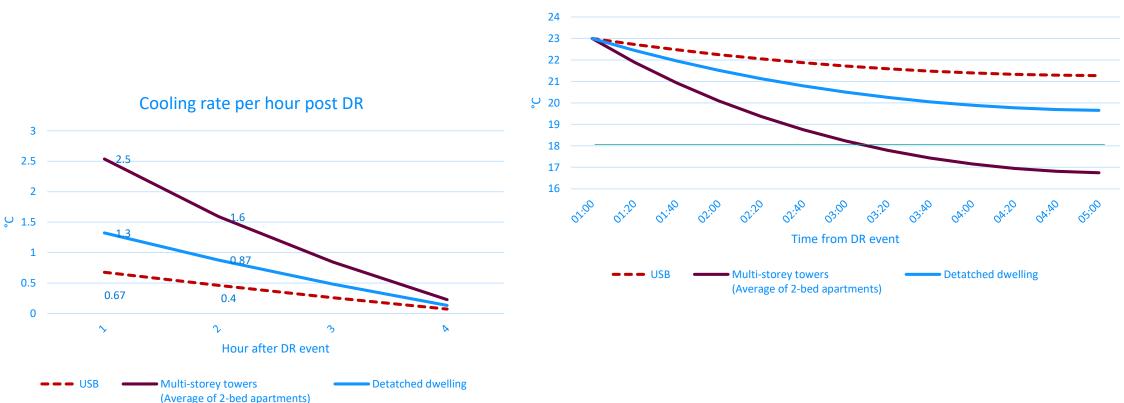
USB electrical energy consumption – Feb 2018 average hourly data

Newcastle


University

UK | Malaysia | Singapore

■ Cir. Pumps ■ HPs ■ AHUs ■ Lighting ■ None deferrable



Total USB electricity consumption vs. % DR capability Feb 2018 average hourly results Extracted from <u>2.9m</u> data points

DR impact on building thermal comfort TRY weather-file : DR @ average external condition of -1.4°C

Newcastle University

UK | Malaysia | Singapore

Summary

- Building can offer flexibility within the comfort envelope of occupants
- New avenue of processing for missing data
- Good learning on building systems
- Commodity cost by far the biggest part of the building energy bill
- Building loads at such a scale to be too small for CURRENT markets, or too small in revenue terms to be valuable to the building
- Aggregation, or new markets, could be of interest

Active Building Principles

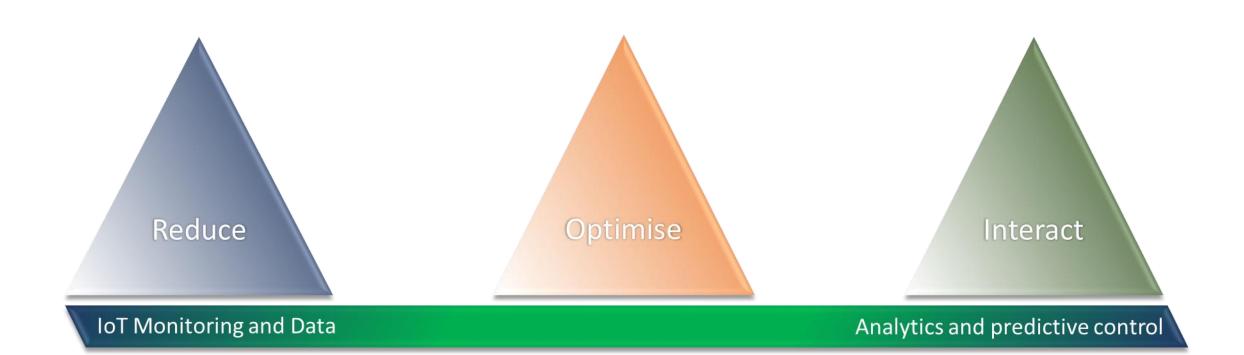
Building fabric and passive design – integrated engineering and architecture design approach including consideration of orientation and massing, fabric efficiency, natural daylighting and natural ventilation. Designed for occupant comfort and low energy by following passive design principles

Energy efficient systems - intelligently controlled & energy efficient systems to minimise loads - HVAC, lighting, vertical transportation. Data capture via inbuilt monitoring & standard naming schemas to enable optimisation and refinement of predictive control strategies

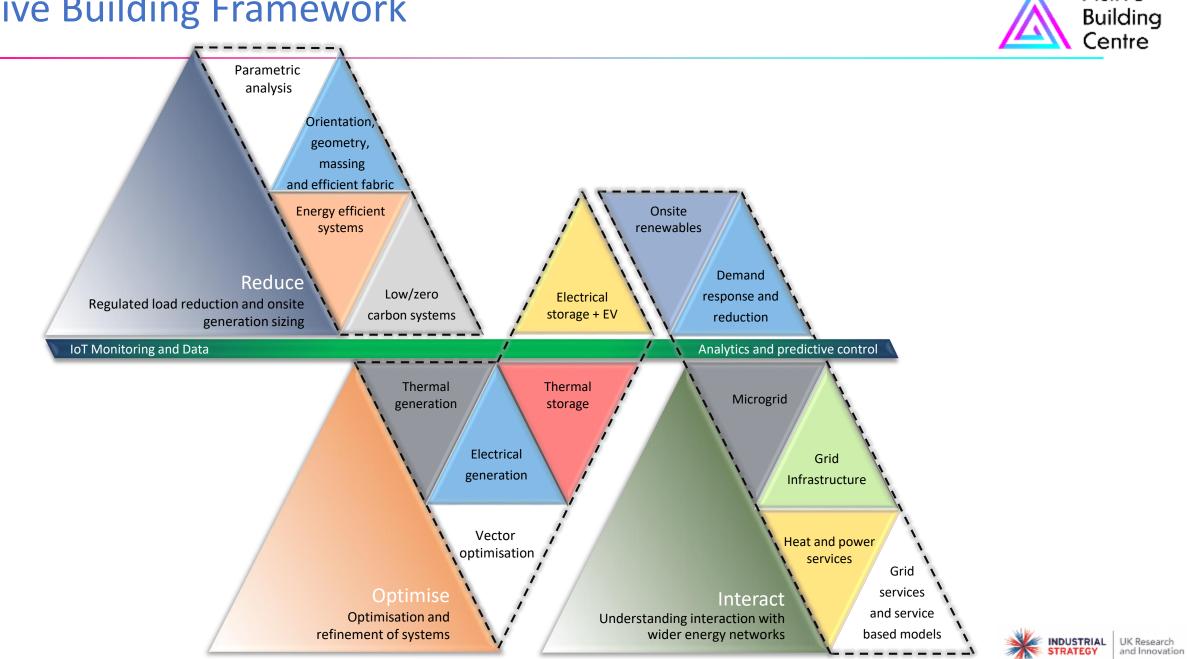
On-site renewable energy generation - renewable energy generation be incorporated where appropriate. Renewable technologies should be selected holistically, given site conditions and building load profiles

Energy storage - thermal and electrical storage should be considered to mitigate peak demand, reduce the requirement to oversize systems, and enable greater control

Electric vehicle integration - where appropriate Active Buildings integrate electric vehicle charging. As technology develops, bi-directional charging will allow electric vehicles to deliver energy to buildings as required



Intelligently manage integration with micro-grids & national energy network – in addition to intelligent controls, Active Buildings manage their interaction with wider energy networks, e.g. demand side response, load shifting & predictive control methods


Active Building Centre

Active Building Framework

Active